
501 Darts Report
Patrick Collins

Who starts first?

To decide who starts first, a minigame is played between the players. This is done by

calling a function miniGame() in the 501 darts.cpp. In this minigame the players

simply aim for the bullseye, whichever one is closer they win the minigame and start

first.

Scoring

At the beginning each player aims for the optimal score of treble 20(60). This is done

by calling the function player_name.throw_treble(20, Player success rate) in the

player class. The players aim for this until their score drops below 70, which is when

the second part of gameplay comes in.

Focus

Once a player’s score has dropped below 70, they will enter the focus section, which

now makes them aim for singles. This is done by calling the function

player_name.throw_single(dartboard number, Player success rate) in the player

class. Depending on their score, they will aim for the dartboard to try and get their

score to 40, 50 or 60. This is to enter the final stage of gameplay.

Checkout

The final stage of gameplay is winning the game or checking out. The first part to this

is if the player’s score is on 50. If their score is on 50, they will aim for a bullseye to

try and win the game. This is done by calling the function

player_name.throw_bull(50, Player success rate) in the player class. However, the

player can miss this and needs to hit doubles.

Hitting doubles is done by checking the player score before throwing and aiming for

a double which will get their score to 0. This is done by checking the first

digit(player_name.getScore() / 10) and second digit of the player’s score(

player_name.getScore() % 10). For example, if the player’s score is 38, the first digit

is 3 and second is 8. The player will then enter this part in the IF statements and aim

for double 19. If successful, their score will be zero and will have won the set.

Going below zero

If one of the player’s score goes below zero due to misses, the score of the last 3

dart throws are added back. This is done by checking the score after each throw and

if below 0 the function player_name.addScore(getBelow()) is called in the score

class.

Outcomes

To count the outcomes, I just used 14 variables. One for each outcome. There are

14 IF statements that check these outcomes. The variable is incremented if the

match ended with the set wins of the players matching the outcome.

For example, outcome one is John winning 7 sets and Sid winning 0. The IF

statement will check this outcome and add one to the first outcome’s variable. This is

checked through all games in the simulation.

Calculating the frequency

To calculate the frequency of each outcome I used the 14 variables.

(Number of outcome divided by number of games) multiplied by 100.

This gives the frequency of each outcome and is then displayed to the user.

Benefit of object orientation

During my time using object orientation I found that the program ran a lot smoother

having implemented it. Everything is organised and the separation of classes and its

.cpp files really help keep the main .cpp file uncluttered and without errors. If there is

an error, which I ran into many, it is easy to single out where the issue is occurring

and fix it.

In comparison to the slot machine in term 1, I can definitely see how object

orientation can improve it. Instead of all the functions in the one .cpp file, having

classes to break up the program could have helped structure how the program was

running and to see the flow of gameplay much easier. This could even be a task for

myself before second year to further understand the benefits of object orientation.

